

ChannelExpert: High Speed Channel Exploration

High speed serial channel design is becoming more and more challenging because of the ever increasing data rate. At multi-gigabit per second data rate, channel designers must characterize all the pieces in the signal path from transmit to receiver including connector, via, and trace, which are typically represented by either IBIS model, AMI model, S-parameter blocks or RLGC transmission line (TML) model. Conventional SPICE-like circuit simulator has difficulty to efficiently handle the channel with mixed S-parameter and TML models, especially with large number of ports. ChannelExpert provides a fast and accurate way to address the signal integrity issue arising from the cascaded network of S-parameter blocks and TML models. Its frequency domain cascading technology and 2D RLGC full wave transmission line solver enable quick and accurate channel simulation. Its intuitive graphic interface lets you easily design, analyze and optimize your high speed serial links for compliance with design standards. Its quick channel build by table allows easy channel setup. Its parametric support enables the quick what-if analysis by sweeping the different S-parameter models for the channel element of interest. S-parameter based fast circuit solver supports the latest IBIS and AMI model, and provides the next generation modulation PAM-4 analysis flow.

ChannelExpert Solution

ChannelExpert provides a fast, accuracy and easy way to evaluate, analyze and optimize pre-layout or post-layout high speed channel performance with its builtin advanced, accurate and fast circuit and EM solver technologies.

Key Points

- Implementation of Ribbon UI offered by Microsoft in their office solutions, and makes Xpeedic application keeping up with the time, and has a modern look and feel.
- Support both frequency domain and time domain analysis, including run frequency sweep analysis, crosstalk analysis, COM analysis, transient analysis and statistical eye diagram analysis.
- Built-in leading edge S-parameter based fast circuit solver to support latest IBIS and AMI model, even the next generation modulation PAM-4.
- Built-in Tline2D solver to support N trace transmission line simulation, and improve both accuracy and simulation speed, make it more efficient.
- Built-in fast 3D via solver for via discontinuities simulation.
- Built-in enough components for signal integrity analysis, including IBIS, IBIS AMI, N-trace transmission line, lumped device, S-parameter, spice subcircuit and so on.
- Easy multiple channel creation by table with only one-click.

- Built-in template to quickly create chip to chip, traditionally backplane and OD backplane channel.
- Built-in substrate and stackup database enable easy transmission line model creation, simulation and parametric.
- Easy multiple high speed channel batch creation for post-layout board to board connection based on pin and connector connectivity relation.
- Support S-parameter and transmission line physical parameters parametric and optimization sweep for easy channel exploration.
- Integrate ViaExpert model into ChannelExpert to automate via model evaluation and extraction flow.
- Code-level integration of SnpExpert Sparameter plotting feature to improve ChannelExpert usability.
- Integrate SnpExpert into ChannelExpert to automate crosstalk plot and compliance check for Ethernet, computing and storage standard.
- Display channel 3D view feature for layout sweep flow with a separate tool named "ChannelView".

FEATURES

Modern Look and Feel

Implement the concept of Microsoft Ribbon, and makes ChannelExpert keeping up with the times.

ChannelExpert

Statistical Eye Diagram Analysis with IBIS and AMI

With built-in statistical eye diagram analysis engine, designers can accurately simulate bit error rate and display bathtub plots.

- One statistical simulation to attain the same coverage as a million transient simulations.
- Accurate modeling of SERDES preemphasis and equalizers for AMI model with both NRZ and PAM-4 modulation.

PAM-4 Eye Diagram

Powerful Parallelized COM Calculation

COM analysis flow help qualify a channel in the context of built-in specification, including 100GBASE-CR4, 100GBASE-KP4, 100GBASE-KR4, 200GBASE-CR4, CAUI-4_C2C. Tabular COM values display and 2D CTLE, PDF, ISI, Jitter and ICR plotting help user get intuitive understanding of high speed channel performance.

Full Channel Crosstalk Analysis

Full channel crosstalk analysis automation with only one click, including NEXT, FEXT, ICN, ILD, ICR, TDR and so on.

Multiple Ways to Create Channel

Support several ways to quickly create channel for signal integrity analysis:

• Built-in "Add Channel by Table" to easy create channel with only one-click.

Add Channel By T	able					
Channel Table						
Column Num	Model Type	Model Name	Diff Pair	Direction		
1 1	т	ті	Port1:Port2	Normal		
2 2	s	Trace_15inch	Port1:Port2	Normal		
3 3	s	Trace_Sinch	Port1:Port2	Normal		
4 4	s	Connector	D2_T1:E2_T1			
5 5	s	Trace_Sinch	Port1:Port2	Flip Horizontal		
6 6	s	Trace_15inch	Port1:Port2	Flip Horizontal		
1 1	т	Т1	Port1:Port2	Flip Horizontal		
		New	Move up	Deserialize Mi		
Add Port Autor	natically	Delete	Move down	Repeat Num		
				Ok		

Add Channel by Table

 Built-in "Add Channel by Template" to easy create "Chip to Chip", "Traditional Backplane", "Orthogonal Direct Backplane" and "Orthogonal Mid-Plane Backplane".

Add Channel-by Template

• Built-in "Add Channel by Layout" to batch create multiple channel based on post-layout connectivity relation. Support OD/BP channel quick creation and fast parametric sweep with built-in WYSIWYG slot number flow.

Add Channel-by Layout

Built-in "Add Channel by Multiboard flow" to create channels based on layout flow. designers can build, debug and analysis channels more efficiently due to a friendly graphical driven interface. When importing board files, a quick interconnection relationship can be built between board connectors, the signal mappings may be implemented by pin name, position, csv file or directly connect by lines.

Add Channel by Multi-Board Flow

Multiple Ways to Create TML Model

Provides two ways to create transmission line model:

• Built-in Substrate Model, Tline2D use substrate model to define transmission line physical parameters.

Name: FR4_Mocorrig Type: Mocorrig Delectric Delectric Delectric 0.02 Loss Tangent 0.02 Heightpg 4.5 mil Conductor Conductor Conductor Conductor Copper 5.8 × 47 S/m Thionesit[] 1.2 mil	trate Definition			
Dielectric Constant 4.2 Loss Tangent 0.02 Height-9 4.5 mil • Conductor Conductor Conductor Conductor Conductor Conductor Conductor TaicknessII 1.2 mil •	me:	FR4_Microstrip		
Dielectric Constant 4.2 Loss Tangent 0.02 Heightigh 4.5 mil • Conductor Cond	se:	Microstrip		
Heightigh 4.5 mil • Conductor Conductor Conductor Copper • Ste+07 <u>S/m •</u> Thickness(f) 1.2 mil •	lectric			
Conductor Conductor Conductivity Copper • Sta+47 Srm • Trickness(f) 1.2 mil •	electric Constant	4.2	Loss Tangent	0.02
Conductor Conductivity [Copper •] 5.4x+67 Srm • ThicknessTil 1.2 mil •	ight(H)	4.5	mil	•
	opper	▼ 5.8e+07		
Trace Parametic By Default	ce Parametic By Default			I-W-II-W-
Width(W) 6 mil • 1 4 k	dth(W)	6	mil	• <u>1</u> 4,+
Spacing(5) 6 mil • H Sr	iding(5)	6	mit	• •
Impedance	pedance			
Zo 95.535		95.535		

Substrate Model

• Built-in Stackup Model, Tline2D use extracted stackup to define transmission line signal layer.

.ength Unit mil		Canducti	ity Unit S/m		Keep Value		Numbe	or of Layers 12	Total Thicknes	162.4
Layen Material	6									
Name	Color	Type	Thickness	CondMaterial	DieMaterial	Description	Bevation		_	-
1 TOP		CONDUCTOR	1.2	COPPER	Air		101.2			
Dielectric_		DELECTRIC		ri/s	FR-4		93.2			
2 12_GND		PLANE	1.2	COPPER	FR-4		92			
Dielectric		DELECTRIC	8	n/a	FR-4		84			
3 13_96		CONDUCTOR	1.2	COPPER	ER-4		82.8			
Dielectric,	-	DELECTRIC	8	n/a	FR-4		74.8		_	
4 14_GND		PLANE	1.2	COPPER	FR-4		73.6			
Dielectric_		DELECTRIC	8	n/s	FR-4		65.6			
5 L5_S0G		CONDUCTOR	1.2	COPPER	FR-4		64.4			
Dielectric_		DIELECTRIC	8	n/a	FR-4		56.4			
6 L6_GND		PLANE	1.2	COPPER	FR-4		55.2			
Dielectric_		DELECTRIC		n/a	FR-4		47.2			
7 17_GND		PLANE	1.2	COPPER	FR-4		46			
Dielectric_		DIELECTRIC	8	r/s	FR-4		38			
0 L0_30		CONDUCTOR	1.2	COPPER	FR-4		35.8			
Dielectric,		DELECTREC	8	n/a	FR-4		28.8		_	_
										Physica

Stackup Model

3D View Display

Xpeedic developed a tool named ChannelView to display backplane and pin connectivity information in 3D view.

- Support hierarchical display
- Support show and hide any board
- Support highlight channel
- Support save x3d file

ChannelView

Easy Create S-parameter Model

- Allows users to edit S-parameter's name
- Support reset pin direction
- Can review frequency

Model import and edit

Compose Schematic

- In order to do channel simulation, ChannelExpert has the interface to put all models together.
- Support all the general operation for components in schematic like copy, flip, rotate and so on.
- To create a more intuitive simulation diagram.
- Support several independent excitation sources, such as pattern source, PRBS, pulse, PWL and DC voltage.
- Support both unencrypted and encrypted HSPICE subcircuit transient analysis with fast simulation speed.

Schematic View

Explore Parametric Results

Support parametric and optimization for high speed channel, and easily explore parametric results in SnpExpert.

- Built-in parametric of length and Substrate
- Support S-parameter parametric
- Support TML parametric

Parametric Results

Post Process

S-parameter, v/t curve, eye diagram and all other generated results are quite convenient to display in ChannelExpert with its built-in plot module. User can enjoy more advanced features offered by SnpExpert to explore the S-parameter such as:

- Built-in FEXT, NEXT, PSXT, ILD, ICN and ICR plots
- Built-in compliance metrics such as IEEE 802.3ba and OIF CEI-25G/28G

• Built-in passivity, causality, reciprocity, stability metrics and enforcements

0.0°	S0011	Xp d6.6 50012	×+9926.8°	50C11	9816.6°	50012
\$30.0 JIM	ala last	P_15.0-	W 250.0 W	·····	235.0 M	- MW
50.0	0 10.0 15.0 20.0 25.0	50.0	25.0 2 0.0 5.0	10.0 15.0 20.0 25.0	50.0 0.0 5.0	10.0 15.0 20.0 2
2 0.0 0	Freq(GHz)	Freq(GHz)		Freq(GHz)	2 0.0 0.0	Freq(GHz)
Xp dis loc.	50021	Xana 10002	Xp Hale loc.	50(2)	-	50C22
\$15.0		San Mannon	V 2300 M	m	250.0 M	moun
# 3	W.		4 ···· /·	1	4	
₩ 0.0 5	0 10.0 15.0 20.0 25.0 Freg(GHz)	950.0 0.0 5.0 10.0 15.0 20.0 Freg(GHz)	25.0 2 0.0 5.0	10.0 15.0 20.0 25.0 Freg(GHz)	980.0 ₩ 0.0 5.0	10.0 15.0 20.0 2 Freg(GHz)
~	Freq(GHz)	rreg(onz)		(GHz)	~	rreg(Griz)
Xr 326.6°		X0596.6% SCD12	×red 6.6°	SCC11)	10.0°	50012
250.0 J	r · · · · · · · · · · · · · · · · · · ·	235.0 M	V 215.0-1	LUN AND A.M.	240.0	M
980.0	0 10.0 15.0 20.0 25.0	500.0 0.0 5.0 10.0 15.0 20.0	25.0 \$ 0.0 5.0	10.0 15.0 20.0 25.0	50.0 5.0	10.0 15.0 20.0 2
2 0.0 0	Freq(GHz)	Freq(GHz)	0 25.0 ≥ 0.0 5.0	Freq(GHz)	2 0.0 0.0	Freq(GHz)
×1916.85	90021	X0000 80002	Xoladia lac.	50021	and the loc.	50022
\$10.0 V	mon	300.0 mmm	N Sus	Jamo	\$20.0 MM	mm
	1.0	5	240.0	1.11	220.0 11	4 F -
100 0 S	0 10.0 15.0 20.0 25.0	380.0 5.0 10.0 15.0 20.0	25.0 2 0.0 5.0	10.0 15.0 20.0 25.0 Freg(GHz)	2 0.0 5.0	10.0 15.0 20.0 7

S-parameter Display

US Office

Seattle 14205 SE 36th St, Bellevue, WA 98006 Silicon Valley 19925 Stevens Creek Blvd #100 Cupertino, CA 95014 sales_us@xpeedic.com

China, Shanghai Office

No.608, ShengXia Road, Building 2, Room210-211, Pudong New Area, Shanghai, 201203 Tel: 86-021-61636350 sales@xpeedic.com

China, Suzhou Office

No.2358, Changan Road, Bldg 1, Floor 5, Wujiang, Suzhou, 215200 Tel: 86 512 63989910 sales@xpeedic.com